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Abstract

The motion of a three-dimensional deformable drop between two parallel plane walls in a low-Reynolds-number
Poiseuille flow is examined using a boundary-integral algorithm that employs the Green’s function for the domain between
two infinite plane walls, which incorporates the wall effects without discretization of the walls. We have developed an eco-
nomical calculation scheme that allows long-time dynamical simulations, so that both transient and steady-state shapes
and velocities are obtained. Results are presented for neutrally buoyant drops having various viscosity, size, deformability,
and channel position. For nearly spherical drops, the decrease in translational velocity relative to the undisturbed fluid
velocity at the drop center increases with drop size, proximity of the drop to one or both walls, and drop-to-medium
viscosity ratio. When deformable drops are initially placed off the centerline of flow, lateral migration towards the channel
center is observed, where the drops obtain steady shapes and translational velocities for subcritical capillary numbers. With
increasing capillary number, the drops become more deformed and have larger steady velocities due to larger drop-to-wall
clearances. Non-monotonic behavior for the lateral migration velocities with increasing viscosity ratio is observed. Simu-
lation results for large drops with non-deformed spherical diameters exceeding the channel height are also presented.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Droplet motion in confined geometries, aside from being of fundamental interest, is relevant to several
application areas, ranging from multiphase fluid flow through porous media to the transport of cells or other
biological media in capillaries and microfluidic devices. In the present work, the behavior of a single deform-
able drop in a Poiseuille flow between two infinite parallel plane walls is examined by numerical simulation,
focusing primarily on cases when the drop size is comparable to the channel height, i.e. when the bounding
walls affect the drop shape and mobility.
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The motion of spherical or nearly spherical drops in a channel consisting of two parallel walls has received
attention by a variety of exact and approximate methods. The parallel motion of a nearly spherical drop
between two channel walls in a quiescent fluid was considered by Shapira and Haber (1988) using the method
of reflections. Approximate solutions for the hydrodynamic drag force exerted on the droplet were obtained,
which are accurate when the drop-to-wall spacing is not small. More recently, Chen and Keh (2001) utilized a
boundary-collocation technique to examine the parallel motion of spherical drops moving near one plane wall
and between two parallel plates as a function of drop size and viscosity ratio. The solutions of Chen and Keh
(2001) agree well with a previous study on the motion of rigid spheres (Ganatos et al., 1980) when the drop-to-
medium viscosity ratio tends to infinity. The motion of rigid particles in Stokes flow between two planar walls
has also been studied (Staben et al., 2003), where a boundary-integral method was used to find the transla-
tional and rotational velocities of spherical and ellipsoidal particles, as functions of particle size and location
in the channel.

In comparison to numerical investigations involving rigid particles, there are two primary factors arising for
deformable drops that introduce enriched physical phenomena at low-Reynolds number. First, one must con-
sider the dynamically coupled flows exterior and interior to the drop interface. Second, the viscous stresses
exerted on the drops by the flow give rise to deformations. In contrast to spherical drops and particles, a neu-
trally buoyant drop in fully developed channel flow is capable of crossing streamlines, as a consequence of
drop deformation. Under such conditions, the drops can obtain a variety of transient non-spherical shapes,
requiring dynamical simulations and an accompanying increased computational demand compared to non-
deformable drops or rigid particles.

The lateral migration of two-dimensional drops in a channel consisting of two parallel plane walls has been
studied numerically for finite Reynolds number (Mortazavi and Tryggvasson, 2000), with the full Navier–
Stokes equations solved by a second-order projection method, using a finite-difference/front-tracking
approach to examine dynamical drop behavior, primarily as a function of the Reynolds number. Although
the study was focused towards higher Reynolds numbers and smaller relative drop sizes and deformations
than those in the present work, some small inertia (Re = 0.25) cases for neutrally buoyant drops were consid-
ered. Of particular interest, when deformable drops with diameter 1/4 of the channel height were initially
placed off the centerline of flow, movement towards the centerline for a low-viscosity drop was reported, while
migration away from the centerline was observed for a drop with viscosity matching the external fluid. The
motion of a two-dimensional bubble rising in an inclined channel, with and without insoluble surfactant,
has also received attention by a boundary-integral method (DeBisschop et al., 2002).

Also related to the problem at hand is the motion of deformable drops through cylindrical tubes, which
has received considerable attention and is motivated by several applications in the field of biomechanics. For
example, the motion of red blood cells through veins or capillaries, as well as the fate of gas bubbles in the
blood stream, is of significant biological and clinical interest. Olbricht and Kung (1992) have experimentally
studied the motion of drops in straight tubes for an extensive range of parameters. The axisymmetric motion
of deformable drops in pressure-driven flow has been considered by Martinez and Udell (1990). The
deformation of axisymmetric drops and bubbles moving through straight tubes and constrictions under
pressure-driven flow have been studied by Tsai and Miksis (1994) as a function of capillary number. Using
a combination of lubrication theory for the thin film between the drop and the tube wall and a two-
dimensional boundary-integral representation for the internal flow, Hodges et al. (2004) recently considered
the motion of a semi-infinite drop moving through a cylindrical tube. Such approaches are not a replace-
ment for the numerical simulations in our work, since they are valid for over a limited range of parameters
(e.g. very small-drop-to-wall clearances and capillary numbers) and have only logarithmic accuracy.
Coulliette and Pozrikidis (1998) considered the transient motion of a periodic file of three-dimensional drops
in a cylindrical tube by numerical simulation for subcritical capillary numbers. In their study, the drop-to-
medium viscosity and density ratios were fixed at unity and the surface tension was assumed constant. The
principal objective of then analysis was to extend previous two-dimensional and axisymmetric studies of
drop motion by examining the dynamics of droplet migration, when the drops are initially placed off the
centerline of flow. Assuming the capillary number is sufficiently large, the drops begin to deform from their
initially spherical shape, migrate towards the centerline of flow, and then approach a steady shape after a
preliminary stage of rapid deformation. The results given by Coulliette and Pozrikidis (1998) provide some
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of the first three-dimensional computed drop shapes for drop motion in a confined container at low-
Reynolds number.

While the numerous studies discussed above constitute considerable progress towards understanding the
low-Reynolds-number motion of drops in tubes and channels, there still remain some important unresolved
issues and computational challenges. In particular, there is a need for a three-dimensional systematic study
of the motion of a deformable drop between two parallel walls in the Stokes flow regime. Thus, the primary
aim of the current work is to develop and employ an efficient and accurate three-dimensional boundary-inte-
gral method for the motion of a neutrally buoyant deformable drop between two parallel plane walls, encom-
passing various drop sizes, capillary numbers, positions within the channel, and drop-to-medium viscosity
ratios. Previous works on the low-Reynolds-number motion of deformable drops in an unbounded medium
have provided many of the necessary computational advancements (Zinchenko et al., 1997, 1999; Zinchenko
and Davis, 2000). In combination with the work by Staben et al. (2003) on rigid particles, these contributions
offer the framework for the study of a deformable droplet confined between two parallel plane walls. Central
to the numerical formulation is a newly improved, efficient version of the Green’s function for the domain
between two parallel walls, originally constructed using repeated reflections by Liron and Mochon (1976)
and later adapted to boundary-integral calculations (Staben et al., 2003). The boundary-integral formulation
for the problem is given in Section 2, essential details regarding our numerical procedures are given in Section
3, and the substantial improvements to the calculation of the most demanding portion of the boundary-inte-
gral equation are discussed in the Appendix A. Numerical results are given in Section 4, where we examine
both dynamic measures, such as drop migration and deformation modes, and steady-state quantities, such
as equilibrium drop locations within the channel, shapes, and translational velocities. The presented three-
dimensional results, which have physically meaningful differences than those from previous two-dimensional
studies, show the complicated relationship between the drop mobility and non-axisymmetric drop shapes.
Long-time calculations involving large drops comparable to the channel dimensions are studied, including dif-
ficult cases when the non-deformed spherical diameter of the drop exceeds the channel height.

2. Boundary-integral formulation

We consider a deformable drop freely suspended in a Poiseuille flow between two parallel plane walls at
low-Reynolds number. Both the drop and external suspending fluid are assumed Newtonian, devoid of sur-
factants, and have viscosities ld and le, respectively, with matching densities (qd = qe). For any point on
the drop surface, S, the interfacial velocity, u(y), satisfies the boundary-integral equation for a deformable
interface (Rallison and Acrivos, 1978)
ulðyÞ ¼ 2j
Z

S
uðxÞ � slðx; yÞ � nðxÞdSx þ F lðyÞ; ð1Þ

F lðyÞ ¼ 2

ðgþ 1Þ
1

le

Z
S

f ðxÞnðxÞ �Glðx; yÞdSx þ ul
1

� �
; ð2Þ
where Gl(x;y) is the Green’s function for the domain between two parallel walls, i.e. the Stokes velocity gen-
erated at x by the unit point force applied to y along the Cartesian coordinate axis (l = 1,2,3), for unit vis-
cosity and no slip at the walls. Here, the stress tensor corresponding to the fundamental solution is
slðx; yÞ ¼ fsl

ijðx; yÞg, n(x) is the outward-pointing unit normal vector, the drop-to-medium viscosity ratio is
g = ld/le, and j = (g � 1)/(g + 1). Finally, f(x) = 2rk(x), so that f(x)n(x) is the stress jump across the interface
due to the constant surface tension, r, where kðxÞ ¼ 1

2
ðk1 þ k2Þ is the local mean curvature. The right Cartesian

coordinate system x1, x2, x3 is chosen such that the plane x3 = 0 serves as the lower wall and the direction of
the flow is along the x2 axis (Fig. 1). The parabolic flow far from the drop is
u1 ¼
4U cx3

H
1� x3

H

� �
e2; ð3Þ
where H is the channel height and Uc is the Poiseuille flow velocity in the channel midplane, x3 = H/2. The
Reynolds number, Re = qeUcH/le, is assumed to be small compared to unity.



Fig. 1. Geometry and coordinate system for the motion of a drop between two parallel plane walls under Poiseuille flow.
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The marginal eigenvalues (j = ±1) of (1) can be purged through Wielandt deflation (Kim and Karrila,
1991; Pozrikidis, 1992), resulting in faster convergence of iterative solutions for g� 1 or g� 1. The deflated
form of the boundary-integral equation is
wlðyÞ ¼ j 2

Z
S

wðxÞ � slðx; yÞ � nðxÞdSx � w0lðyÞ þ
nlðyÞ

S

Z
S

wðxÞ � nðxÞdSx

� �
þ F lðyÞ ð4Þ
for w = u � ju 0, where the prime denotes the projection of the vector field on the space of rigid body motions,
and
u ¼ wþ j
1� j

w0: ð5Þ
Following singularity and near-singularity subtraction (see below), (4) becomes suitable for efficient numerical
solutions.

The field w 0(y) can be calculated without Gram–Schmidt orthogonalization, simply as (Zinchenko et al.,
1997)
w0ðyÞ ¼ Aiei þ Biei � x̂; ð6Þ

where x̂ ¼ x� xc and
xc ¼
1

S

Z
S

xdS ð7Þ
is the surface centroid,
Ai ¼
1

S

Z
S

wiðxÞdS ði ¼ 1; 2; 3Þ; ð8Þ
and the coefficients Bi (i = 1,2,3) are calculated from the solution of a 3 · 3 system
DijBj ¼
Z

S
wðxÞ � ½ei � x̂�dS; ð9Þ
where Dij is a positive-definite matrix
Dij ¼
Z

S
½dijx̂

2 � x̂ix̂j�dS: ð10Þ
3. Numerical method

Explicit expressions for the Green’s function components for the domain between two parallel walls, Gl
j,

and the corresponding pressures, pl, have been derived by Liron and Mochon (1976) in terms of infinite
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Fourier–Bessel integrals, which, unfortunately, are extremely cumbersome and impractical for direct use in
dynamic simulations. The starting point of our approach is to represent the Green’s function as the sum of
four contributions: Gl ¼ Gl

0 þGl
LW þGl

UW þ Ĝl, for the free-space part, lower-wall and upper-wall correc-
tions, and the two-wall interaction term, respectively. The indices LW and UW denote lower-wall and
upper-wall corrections, so that, for example, Gl

0 þGl
LW is the Green’s function for the whole half-space

x3 > 0, derived by Blake (1971) and summarized by Pozrikidis (1992). Advantages of using the Green’s func-
tion for the confined domain, in combination with boundary-integral methods, include that discretization of
the bounding walls is not required (instead only the drop surface must be discretized) and the resulting second-
kind integral equation has spectral properties suitable for iterative solution by successive substitutions (Kim
and Karrila, 1991; Pozrikidis, 1992).

The free-space Green’s function originates from the fundamental solution for the point-force velocity in an
unbounded fluid,
ðGl
iÞ0ðx; yÞ ¼ � 1

8p
dil

r
þ rirl

r3

� �
; ð11Þ
with r = x � y and r = krk. Singular behavior in the free-space portion, as x! y, is handled by standard sin-
gularity subtraction:
Z

S
f ðxÞnðxÞ �Gl

0ðx; yÞdSx ¼
Z

S
½f ðxÞ � f ðyÞ�nðxÞ �Gl

0ðx; yÞdSx; y 2 S: ð12Þ
A similar desingularization is made for the free-space contribution to the double layer using the identityR
S sl

0ðx; yÞ � nðxÞdSx ¼ 1
2
el for y 2 S, yielding
Z

S
wðxÞ � sl

0ðx; yÞ � nðxÞdSx ¼
1

2
wlðyÞ þ

3

4p

Z
S

½r � nðxÞ�½r � ðwðxÞ � wðyÞÞ�rl

r5
dSx: ð13Þ
The lower-wall correction to the fundamental solution is
ðGl
iÞLWðx; yÞ ¼ � 1

8p
� dil

R
� RiRl

R3

� �
þ m 2y3ðy3 � R3Þ

dil

R3
� 3

RiRl

R5

� �
� 2y3

dl3Ri � di3Rl

R3

� �� 	� �
; ð14Þ
where R ¼ x� y�LW, y�LW is the mirror image of the point y with respect to the lower wall, R = kRk, and
m = ±1, with the plus sign for l = 1,2 and minus for l = 3. The upper-wall correction can be obtained by
replacing y3 with (y3 � H) and y�LW with y�UW in (14). The lower- and upper-wall corrections possess singular-
ities when x ¼ y�LW and x ¼ y�UW, respectively. To significantly improve the accuracy of calculations when the
drop is close to either or both walls, integrations involving the lower- and upper-wall corrections are subject to
near-singularity subtraction (Staben et al., 2003)
Z

S
f ðxÞnðxÞ �Gl

LWðx; yÞdSx ¼
Z

S
½f ðxÞ � f ðx0

LWÞ�nðxÞ �G
l
LWðx; yÞdSx for y 2 S; ð15Þ
where x0
LW is the mesh point on S closest to the mirror image of point y with respect to the lower wall; for the

upper-wall correction, x0
UW, has a similar meaning, and the analog of (15) is used.

Since sl
LWðx; yÞ and sl

UWðx; yÞ are divergence-free tensors for x between the walls, the double-layer integrals
are transformed as
Z

S
wðxÞ � sl

LWðx; yÞ � nðxÞdSx ¼
Z

S
½wðxÞ � wðx0

LWÞ� � sl
LWðx; yÞ � nðxÞdSx; ð16ÞZ

S
wðxÞ � sl

UWðx; yÞ � nðxÞdSx ¼
Z

S
½wðxÞ � wðx0

UWÞ� � sl
UWðx; yÞ � nðxÞdSx: ð17Þ
The expressions for the wall-correction integrands involving the stress tensor are
Dw � sl
LWðx; yÞ � nðxÞ ¼ � 3

4p
ðR � nÞðR � DwÞRl

R5
� 3

2p
y3m

R5

5ðy3 � R3ÞðR � nÞðR � DwÞ
R2

� y3ðDw � nÞ
� �

Rl

�
þðR3 � y3Þ½ðR � nÞDwl þ ðR � DwÞnl� þ ðR � nÞðR � DwÞdl3

�
; ð18Þ
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where Dw ¼ wðxÞ � wðx0
LWÞ, n = n(x), and R ¼ x� y�LW with a similar expression for the upper-wall integrand

if Dw ¼ wðxÞ � wðx0
UWÞ, R ¼ x� y�UW, and y3 in (18) is replaced by y3 � H.

The two-wall interaction term, bGl, accounts for the presence of both walls simultaneously and can be
viewed as a result of repeated reflections taken to satisfy the no-slip condition at the walls (Bhattacharya
and Blawzdziewicz, 2002), and its calculation is the most cumbersome and computationally expensive portion
of the simulation. The contribution, bGl, is a smooth function of x and y up to the walls and is not singular at
x = y, nor when x and y are both close to either wall. A previous study on rigid spheres represented this inter-
action term as a collection of regularized Fourier–Bessel integrals (Staben et al., 2003), which eliminated the
poorly convergent behavior of the original solution (Liron and Mochon, 1976) for the extreme cases listed
above. However, direct evaluation of the regularized integrals in the dynamical simulations for deformable
drops would still be prohibitively expensive. An alternative to direct calculation might be to pre-tabulate
and then interpolate the smooth tensor, bGlðx; yÞ, from tables, but this approach is still much too computation-
ally demanding for long-time dynamic simulations, given the complex structure of bGlðx; yÞ (Staben et al.,
2003) and the large number of interpolations required. We have instead devised a more economical scheme
to calculate bGlðx; yÞ based on Taylor expansions about the drop center, xc, as described in the Appendix A.
The numerical accuracy of the Taylor expansions was assessed by comparing to direct calculations of the reg-
ularized Fourier–Bessel integrals. Compared to small drops, a large drop that is close to both walls requires a
greater number of retained terms in the expansions to obtain convergence.

For our simulations, the drop was typically started from a spherical shape. Several surface discretization
schemes were used to generate unstructured, highly uniform triangulations of a spherical surface from a reg-
ular polyhedron, followed by a series of refinements. These schemes yield discretizations with Nn = 20 · 4n or
60 · 4n (n = 0,1,2, . . .) triangular elements, plus additional possibilities of Nn = 720, 1500, 2160, 2880, and
6000 (Zinchenko et al., 1997; Staben et al., 2003). Each triangulation has Nn/2 + 2 triangle vertices with a
maximum-to-minimum mesh edge ratio between 1.19 and 1.22. In cases where the drop started from an ellip-
soidal shape, triangulations were performed for a unit sphere and then transformed by simple stretching.

Eq. (4) is approximated as a linear system for unknowns, w(yn), at the triangle vertices on the drop surface,
which serve as the only collocation points. For any smooth function u(x) on S, a simple surface trapezoidal
rule is used with reassignment of the triangle contributions to the vertices (Rallison, 1981):
Z

S
uðxÞdS 	

X
xn

uðxnÞDSn; ð19Þ

DSn ¼
1

3
DS; ð20Þ
where the summation in (20) is taken over all flat triangle areas DS with vertex xn. For non-matching viscos-
ities, the velocity is obtained by solving (4) using simple iterations. When g = 1, only (2) requires calculation
and the iterative procedure can be bypassed.

For the curvature and normal-vector calculations, the best-paraboloid method is used (Zinchenko et al.,
1997, 1999). The standard second-order Runge–Kutta method is used to update the shape and location of
the drop interface. To avoid a familiar difficulty with mesh degradation in dynamical simulations, ‘‘passive’’
mesh stabilization techniques are employed to maintain the quality of triangulation as time proceeds. The
essence of this procedure is to construct an additional global tangential field on the drop surface from the solu-
tion of some variational problem. These additional node velocities act to minimize, in some sense, the ‘‘kinetic
energy’’ of the disordered mesh motion. In the simulations of relatively compact drop shapes, a simple
approach to mesh preservation (Zinchenko et al., 1997) that seeks to minimize the average rate of change
of the distance between neighboring nodes is sufficient. For larger deformations, a more complicated form
of the minimizing function that includes curvature adaptation is used, as described by Eqs. (5.3)–(5.6) of Zinc-
henko et al. (1999). To consider even larger deformations, including those with supercritical capillary numbers
where the drops continually deform and are expected to eventually break, a curvatureless form of the bound-
ary integrals (Zinchenko et al., 1999), or mesh restructuring into compact elements (Cristini et al., 1998, 2001),
would be required. However, these additional possibilities were not explored, since we examine subcritical
deformations in this work.
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4. Results and discussion

The dimensionless parameters governing the motion of a neutrally buoyant drop or bubble between two
parallel walls are the ratio of drop size to the channel height, drop-to-medium viscosity ratio, and capillary
number, in the numerical results presented here, the channel height, H, and the unperturbed fluid velocity
at the channel centerline, Uc, have been chosen as the characteristic length and velocity scales for non-dimen-
sionalization, respectively. The capillary number, Ca = leUc/r, describes the relative magnitude of the viscous
to interfacial forces. Drops with reduced non-deformed diameter, 2a/H < 1, are initially spherical in shape and
centered at a prescribed channel position, xc

3=H . The drop velocity, U, is defined as the fluid velocity averaged
over the drop volume and was calculated using Gauss’ theorem
Fig. 2.
with t
interac
U ¼ 1

V

Z
V

uðxÞdV ¼ 1

V

Z
S
½uðxÞ � nðxÞ�ðx� xcÞdSx: ð21Þ
In advancing the solution, we chose a stable timestep, Dt 6 bCa min(Dxmin,0.7Dzmin), where b is a constant,
typically limited to be between 1 and 3 to prevent the onset of numerical instabilities, Dxmin is the minimum
mesh edge, and Dzmin is the minimum of all node-to-node distances, kx� y�UWk and kx� y�LWk, between the
drop interface and its mirror images with respect to the upper and lower walls. The point pairs for which x is
closest to y�LW or y�UW are excluded from the calculation of Dzmin, since they do not contribute to the boundary
integrals after the near-singularity subtraction. This choice of timestep is similar to that employed for two
drops in close approach (Zinchenko and Davis, 2005) and ensures adequate stability for calculations of drops
in close proximity to the bounding walls.
Comparisons of the solutions with and without the two-wall interaction term for the longitudinal velocity and drop center position
ime for g = 1, Ca = 0.5, and 2a/H = 0.6. The solid line and dashed lines represent the solution with and without the two-wall
tion term, respectively.
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4.1. Effect of two-wall interaction term

Although the two-wall interaction term is required to satisfy the boundary conditions at the walls and rep-
resents the most burdensome portion of our calculations, we find its contribution to the solution for the
steady-state velocity to be relatively small compared to the other contributions. The role of the interaction
term in our boundary-integral calculations is illustrated in Fig. 2, where results for the longitudinal velocity
and the drop center position are plotted versus time, with and without this term. In Fig. 2, the drop is initially
spherical with 2a/H = 0.6, centered at xc

3=H ¼ 0:4, and Nn = 3840 triangular elements were used with
Ca = 0.5 and g = 1. Although there is a small but noticeable effect of the interaction term during the initial
transient stage of drop deformation and migration, both solutions predict practically the same steady position,
xc

3=H ¼ 0:5, and velocity. The simulation times for the results given in Fig. 2 with and without the two-wall
interaction term took approximately 252 and 180 min, respectively, using an AMD Athlon XP 2800+ proces-
sor under Visual Fortran. The differences in steady-state drop shapes for calculations with and without the
interaction term are illustrated in Fig. 3, which shows drop contours as two-dimensional slices in (a) the plane
x1 = 0 (side view) and (b) the channel midplane (top view). For these results, the drop was initially positioned
at xc

3=H ¼ 0:5 with 2a/H = 0.8, Ca = 0.9, and g = 1, using Nn = 6000. Again, good agreement between the
two solutions is obtained for this drop, which is larger and more deformable than the one presented in Fig. 2.

Over a wide range of parameters, the largest discrepancy between the solutions, with and without the two-
wall interaction term, for the steady velocities that we observe is less than 1%. From these results for g = 1, it is
clear that the interaction term contributes little to the steady-state quantities of interest. It is also expected that
the interaction term makes a negligible contribution to the steady-state results when g 5 1, since the integ-
rands in the double-layer integral (4) decay faster than those in the single-layer integral. As shown below
for g� 1, the contribution of the two-wall interaction term from the double-layer potential at steady state
Fig. 3. Comparison of steady drop shapes with 2a/H = 0.8, g = 1, and Ca = 0.9 for (a) side view and (b) top view. The solid line represents
the shape with and the two-wall interaction term the dashed line without.
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is indeed negligible and we have chosen to neglect this contribution for g 5 1 to not overburden the code at
this time. However, the effect of the interaction term may be more important in drop dynamics when the drop
is close to both walls. For example, the relative magnitude of the interaction term may be greater when study-
ing the gravity-driven motion of a tightly fitting drop in an inclined channel.

4.2. Velocities of nearly spherical drops

When the capillary number tends to zero, interfacial forces dominate the viscous forces and the drop main-
tains a spherical shape. As a consequence of the reversibility of the Stokes equations, a neutrally buoyant
spherical drop will not migrate across channel streamlines, and so only steady motion parallel to the plane
walls results. Computed translational velocities for nearly spherical drops are given in Fig. 4 for a wide range
of drop sizes and drop-to-medium viscosity ratios, g, using Nn = 3840 triangular elements. The velocities of
the drops decrease with increasing drop size, proximity to the walls, and drop-to-medium viscosity ratio. Inter-
estingly, the computed velocities are seemingly independent of g for small drops, as they tend to move with the
Poiseuille flow rather than lag behind it. Our numerical results for the translational velocity of nearly spherical
drops are insensitive to triangulations above Nn = 3840 for cases when the minimum drop-to-wall spacings
are greater than about 1% of the channel height. Additionally, our results for large g (
15 or greater) and
small Ca (60.05) agree quite well (within about 1%) with previously reported calculations for rigid spheres
(Staben et al., 2003), regardless of droplet size or channel location. The observed agreement between our
results for g� 1 and those of Staben et al. (2003), who incorporated the two-wall interaction contribution
into their double-layer boundary integrals, indicates that the contribution of this term on the double-layer cal-
culation is, indeed, quite small for the steady cases considered here.
Fig. 4. Simulation results for the dimensionless translational velocities for spherical drops as a function of position of the drop center
within the channel, for drops of diameter 2a/H= (a) 0.3, (b) 0.4, (c) 0.5, (d) 0.6, with viscosity ratios of (s) 0.5, (h) 1.0, (n) 5.0, and (�) 10
(right to left). The dashed line represents the undisturbed parabolic flow.
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4.3. Transient motion of deformable drops

When a deformable drop is placed off the centerplane of flow, migration across channel streamlines occurs,
owing to the ability of the drop to adopt non-spherical transient shapes. A similar phenomenon occurs for a
deformable drop in shear flow, which migrates away from a nearby wall (Smart and Leighton, 1991; Uijtte-
waal et al., 1993). In both cases, the drop velocity has components perpendicular and parallel to the walls.
Fig. 5 shows computed shapes for the current study at various dimensionless times for the transient migration
of a highly deformable drop with Ca = 1.0 and g = 1, for a mesh with Nn = 8640 triangular elements, which is
started from a sphere with diameter 2a/H = 0.6 positioned at xc

3=H ¼ 0:4. The drop initially elongates in the
direction of the Poiseuille flow and migrates away from the lower wall. A tail is evident at intermediate times,
which can be attributed to the viscous interaction of the drop with the nearby lower wall. As the drop
approaches the channel center, the tail begins to retract and the drop eventually obtains a steady shape that
is compact and symmetric about the channel midplane, as shown at time Uct/H = 40.61. This type of dynamic
behavior for drop migration is observed for a wide range of viscosity ratios and (subcritical) capillary
Fig. 5. Snap shots depicting the evolution of a deformable drop initially placed off the centerline of flow at xc
3=H ¼ 0:4, with g = 1.0,

2a/H = 0.6, and Ca = 1.0 taken at various times. Each box has a height equal to the channel height.
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numbers. For example, Fig. 6 gives trends for the longitudinal velocities and the center locations as the drop
travels down the channel for g = 1 and a range of capillary numbers. In the initial phase, a decrease in the
longitudinal velocity is observed (Fig. 6a) and can be attributed to the onset of shape distortion, which
increases the drop resistance to the flow. Following this initial phase of deformation and migration to the
channel center, the translational velocity increases, owing to the streamlined shape adopted by the drops. It
is clear from Fig. 6b that the drop migrates increasingly faster towards the channel center with increasing
Ca, as expected because migration across streamlines only occurs through deformation. Similar behavior
has been reported for drop migration away from a single plane wall (Uijttewaal et al., 1993). Fig. 6c shows
that the drop deformation increases with increasing capillary number, but this effect is most pronounced dur-
ing the transient stage.

Over a wide range of initial conditions, we have observed that drops move away from the channel walls,
towards the channel center, and obtain a steady position with the drop center in the channel midplane, regardless
Fig. 6. Simulation results for (a) longitudinal velocities, (b) drop centers, and (c) tip-to-tip drop lengths as functions of time for a drop
with for g = 1.0 and 2a/H = 0.6 initially located xc

3=H ¼ 0:4.



A.J. Griggs et al. / International Journal of Multiphase Flow 33 (2007) 182–206 193
of the initial placement, size, capillary number, or viscosity ratio. Mortazavi and Tryggvasson (2000) have
reported that the direction of drop migration, either towards or away from a bounding wall, depends on the
drop-to-medium viscosity ratio, which is apparently a finite-Reynolds-number effect. The tendency of match-
ing-viscosity drops to migrate towards the channel center, rather than towards one wall, is in qualitative agree-
ment with prior results for the initial stages of migration of a periodic file of three-dimensional deformable drops
with g = 1 in a cylindrical tube (Coulliette and Pozrikidis, 1998). Although the steady streamlined shapes
adopted by the drops in our simulations are qualitatively similar in the x2–x3 plane to those observed in previous
experimental (Olbricht and Kung, 1992) and theoretical campaigns (Coulliette and Pozrikidis, 1998) for cylin-
drical tubes, the steady drop shapes for our channel-flow simulations are symmetric about the channel midplane,
but not axisymmetric like those observed for cylindrical tubes, and can be described as ‘‘heart-shaped’’. Unfor-
tunately, experimental studies of deformable drops in planar channels with dimensions comparable to the chan-
nel are lacking in the literature to date.
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We have extended our boundary-integral calculations to study drop migration for non-matching viscosities.
Fig. 7 shows results for a range of viscosity ratios with fixed Ca = 0.5. A typical calculation with Nn = 3840
and g = 2 required approximately 6 h to reach Uct/H = 50, using a AMD Athlon 2800+ processor under
Visual Fortran. In Fig. 7a, the translational velocities parallel to the channel walls are plotted versus time
for several drops having different viscosity ratios. With increasing viscosity ratio, the average drop velocity
parallel to the channel wall, U2, decreases due to the increased hydrodynamic resistance. In Fig. 7b, the drop
center positions (surface centroid, xc

3) are plotted with time. In all cases, the drop migrates towards the cen-
terplane of the channel, where it reaches and maintains a steady-state shape and velocity. The rate at which
the drops migrate towards the channel center depends on the capillary number and the viscosity ratio, both of
which influence the drop deformation. When the capillary number is fixed, increasing the viscosity ratio from
g = 0.5 to 1 results in a reduced migration velocity, due to higher hydrodynamic resistance. For large viscosity
ratios (e.g. g = 25), both the longitudinal and transverse velocities are relatively low, due to the diminished
internal flow. However, over the range g = 2–10, non-monotonic behavior is observed for the cross-channel
(transverse) migration velocities. This behavior can be explored with the aid of several important observations
from Fig. 7c, which shows the maximum drop elongation (relative to the spherical drop diameter) as a func-
tion of time. For the range of g considered here, the degree of deformation for steady drop shapes increases
monotonically with increasing viscosity ratio, but the trends for the dynamic deformation are not as simple. In
all cases, the drops initially elongate as they are deformed by the flow, and then relax toward a more compact
steady shape as the tail retracts. During the initial short-time elongation phase, low-viscosity drops deform
most rapidly (and reach maximum elongation in the shortest time), because they offer less viscous resistance
Fig. 8. Transient drop shapes (contours) for deformable drops with g = 1.0, 2a/H = 0.8 for a series of Ca = 0.1, 0.3, 0.5, 0.7, and 0.9 as a
function of position in the channel. The drops are initially spherical and placed in the center of the channel (x3/H = 0.5). The drop shapes
are given at Uct/H = 0.05, 1.0, 2.0, 3.0, and 4.5 (left to right) for each value of capillary number.
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to dynamic deformation. In contrast, after the relaxation phase, high-viscosity drops reach the greatest
deformation (albeit slowly). Since, in general, the rate of lateral migration increases with increasing deforma-
tion, the low-viscosity drops move most rapidly towards the channel centerplane during the initial phase, but
higher-viscosity drops may migrate more rapidly towards the centerplane during the latter phase. In particu-
lar, Fig. 7b shows a cross-over at Uct/H 
 25, where the drops with g = 5 and 10 migrate faster across stream-
lines after this time than does the drop with g = 2.

For drop motion along the channel center, we have observed steady shapes that have a tapered front and a
blunt trailing surface for small Ca. As Ca is increased, the drop elongates in the direction of the Poiseuille flow,
the shape of the trailing surface becomes more complicated, and, eventually, a non-axisymmetric posterior
dimple develops. Fig. 8 shows transient drop profiles (two-dimensional slices in the plane x1 = 0) for drops
initially placed on the channel center with an initial non-deformed spherical diameter of 2a/H = 0.8 and
g = 1, for a range of capillary numbers. When the capillary number is small, drops tend to maintain a nearly
spherical shape. With increasing Ca, the drops elongate more and an accompanied increase in the steady lon-
gitudinal velocities is observed, due to the (slightly) larger surface clearances. For sufficiently large Ca, the cur-
vature of the trailing surface changes sign. For the drop size and viscosity ratio presented in Fig. 8, drops
develop and maintain an increasingly pronounced posterior dimple with increasing Ca above 0.5, which
can be attributed to the parabolic flow indenting the backside of the drop. We find that steady-state drop
shapes are obtained with this feature up to Ca 
 1.0. Above this critical Ca, the drops continuously deform
(eventually causing the numerical code to fail) and breakup is expected. A side view (x2–x3) of the three-
dimensional meshes for these steady drop shapes is given in Fig. 9. These regular meshes are maintained
for long times for subcritical Ca, which allow the complicated drop shapes to be resolved using only a mod-
erate number of triangles (Nn = 3840). As noted earlier, the steady velocity of a deformable drop between two
Fig. 9. Three-dimensional meshes for the steady-state shape reached by deformable drops with g = 1.0 and 2a/H = 0.8, using Nn = 3840
for Ca = (a) 0.1, (b) 0.3, (c) 0.5, (d) 0.7, and (e) 0.9.
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parallel plane walls is related to the drop shape and viscosity. Compared to viscous drops, bubbles having the
same capillary number are less tapered and do not develop these pronounced posterior dimples.

Steady velocities and minimum wall separations are plotted in Fig. 10 for homoviscous drops over a range
of drop sizes and capillary numbers. We have included results for cases when 2a/H > 1, which are discussed
further in the next section. When the drops are sufficiently small, they move with the fluid velocity, but the
velocity decreases with increasing drop size due to viscous interactions with the walls and the parabolic veloc-
ity profile from the imposed Poiseuille flow. The decrease in velocity is greatest for small Ca, as the drops
deform less and so their edges remain closer to the walls. For larger Ca, the decrease in velocity is nearly linear
with increasing drop size. Since drop deformability increases with increasing Ca, the minimum gap increases,
thus lowering the hydrodynamic resistance and resulting in an increased velocity relative to the non-deformed
spherical shapes. In contrast to drops with small Ca, the minimum drop-to-wall spacing as a function of drop
size has a noticeable degree of convexity for larger Ca, as shown in Fig 10b, attributable to greater
deformation.

Fig. 11 shows steady longitudinal velocities and wall separations for drops with 2a/H = 0.9 as a function of
capillary number for a range of drop-to-medium viscosity ratios. The decreased velocity parallel to the wall
with increasing viscosity ratio is due to the reduced internal flow inside the drop. For all viscosity ratios,
the velocity increases with increasing Ca, as expected. However, the change is greater for the more viscous
drops because they are more deformed than inviscid drops at long times over a wide range of drop sizes. When
the drop size is comparable to the channel height, the trailing surface of viscous drops may develop symmetric
tails that come in close contact with the walls for sufficiently large Ca. Such features of highly deformable
drops are less pronounced for low-viscosity ratios than for more viscous drops and are discussed in the next
section.
Fig. 10. Steady longitudinal velocities and minimum drop-to-wall spacing for homo viscous drops as a function of non-deformed spherical
diameter for a range of capillary numbers.



Fig. 11. Steady translational velocities and minimum surface clearances as a function of capillary number for drops with 2a/H = 0.9 for a
range of viscosity ratios.
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4.4. Large drops

Simulations involving tightly fitting drops are often computationally challenging, since the drop surface is
close to both walls. We present such a challenging case for a deformable drop with Ca = 0.25 that is initially
placed on the channel midplane and spherical with 2a/H = 0.98. The longitudinal velocity and the minimum
drop-to-wall spacing, d, are plotted versus time in Fig. 12. Drop shapes are plotted for this case as a function
of channel position in Fig. 13a, while the steady shape is shown with shading and contours from the top in
Fig. 13b, and from an angled perspective in Fig. 13c. Viscous forces cause the drop to deform in such a
way that there is a short period when the drop surface closely approaches the walls, where, as shown in
Fig 12b, the minimum gap decreases to about 0.3% of the channel height, which results in the observed
decrease in the translational velocity. Interfacial forces then cause the drop edges to move away from the
walls, while the external flow stretches the drop along the x2-direction, and the longitudinal velocity increases
as a result. Since the drop contracts along the x3-axis and moves away from the walls, the drop interface main-
tains favorable geometric configurations, which foster stable simulations, even when in close proximity to both
walls. Near-singularity subtraction is essential in resolving the small surface clearances in such cases. For
example, the simulation for Fig. 12 faltered very early (Uct/H 
 1.0) when the near-singularity subtraction
was excluded in the calculations; however, with the subtraction scheme in (15), we are able to extend the cal-
culation to Uct/H > 4, well after a steady-state translational velocity and shape are obtained. In contrast with
calculations for rigid spheres (Staben et al., 2003), adaptive surface triangulations were not required for sim-
ulations of deformable drops, possibly owing to the lower hydrodynamic resistance in the near-contact zones,
when compared to the case of solid particles.

We now consider the case of a drop initially having an ellipsoidal shape and volume greater than a spherical
drop that would fit tightly in the channel. The semi-axes of the ellipsoidal drop are initially [a1/H,a2/H,



Fig. 12. Simulation results for two levels of triangulation, Nn = 8640 (dashed line) and 15360 (solid line) for (a) the longitudinal velocity
and (b) the minimum drop-to-wall spacing, d, as functions of time, with 2a/H = 0.98, Ca = 0.25, and g = 1.

Fig. 13. Contours of a three-dimensional drop showing the deformation of a drop with dimensions comparable to the channel height
(2a/H = 0.98) with Ca = 0.25 and g = 1, for Uct/H = 0.1, 0.2, 0.5, 0.6, 1.2, and 2.7 (left to right) in (a). The top view of the steady drop
shape is given in (b) with shading and contours. The steady shape from an angled view with shading is given in (c).
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a3/H] = [1.6,1.6, 0.8], resulting in a drop diameter that is 27% larger than that of a spherical drop that would
contact both walls. Fig. 14 shows drop contours for a homoviscous drop with Ca = 0.5, using Nn = 11520.



Fig. 14. Contours of a three-dimensional drop with 2a/H = 1.27, g = 1, and Ca = 0.5 showing the deformation from its initial ellipsoidal
shape over time with Uct/H = 0.1, 0.4, 0.8, 1.2, 1.6, and 2.0 (left to right).
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Initially, the drop contracts slightly due to interfacial tension, and is then stretched by the external flow. The
steady shape adopted by the initially ellipsoidal-shaped drop is similar to those that are initially spherical in
shape (cf. Fig. 8); the external Poiseuille flow tends to form a posterior dimple, which becomes more
pronounced as the viscous forces become more dominant. For larger drops, we expect the shape of the
posterior dimple will heavily influence the drop motion, since the average surface clearance is expected to vary
little over the length of the drop.

We now examine the effect of varying the viscosity ratio for tightly fitting drops. Fig. 15 gives results for
the translational velocities as a function of time for g = 0.5, 1.0, and 2.0 with fixed Ca = 0.5. As the viscosity
ratio is increased, the steady drop velocity decreases. The steady-state contours for these drops are com-
pared in Fig. 16. As expected, the long-time deformability increases with increasing viscosity ratio. Although
the minimum gap decreases with increasing g, the average surface clearance is nearly independent of g. The
minimum drop-to-wall spacing is located near the trailing edge of the drops, where a puckered end develops,
Fig. 15. Longitudinal velocities of initially ellipsoidal-shaped drops (2a/H = 1.27) as functions of time for Ca = 0.5 and various g.

Fig. 16. Steady drop shapes shown as contours for Ca = 0.5 and 2a/H = 1.27 with viscosity ratios, g = 2 (dashed), g = 1 (solid), and
g = 0.5 (dotted).



Fig. 17. Three-dimensional steady-state drop shapes with shading with Ca = 0.5 and 2a/H = 1.27 for (a) g = 2, (b) g = 1, and (c) g = 0.5.
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which is more noticeable for g = 2 than for g = 1 or 0.5. Fig. 17 gives the three-dimensional drop shapes
with shading, which shows the complicated shapes obtained by these drops. As the drop viscosity is
increased, the flow inside the drop takes a more dominant role in influencing the drop shape, as can be
argued by considering the normal stress balance across the interface (Olbricht and Kung, 1992). Further
increases in g result in the drop tails becoming progressively more elongated and proximate to the walls.
We were unable to conduct simulations for drops of the same size and capillary number beyond g 
 6, since
the tails at the trailing surface became too elongated, which may be a sign of breakup. Experimentally
obtained critical capillary numbers for large drops in cylindrical tubes have been reported to decrease with
increasing viscosity ratio (Olbricht and Kung, 1992).
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5. Concluding remarks

The kinematics of a freely suspended drop between two parallel walls subject to a Poiseuille flow have been
examined here for a wide range of drop sizes, capillary numbers, and viscosity ratios. Deformable drops
migrate away from the closest wall, and the preferred steady location was found to be centered on the channel
midplane (x3/H = 0.5), where the drop eventually maintains a non-spherical steady shape for finite Ca; the
deviations from the spherical shape were found to be an increasing function of Ca. Steady shapes for viscous
drops are more elongated than for bubbles and exhibit pronounced posterior dimples. For drops with non-
deformed spherical diameter exceeding the channel height, as the viscosity ratio is increased, the drop-to-wall
spacing remains nearly uniform across the length of the drop, but the trailing interface becomes more
deformed and proximate to the walls when Ca is fixed. The component of the drop velocity parallel to the
walls is also an increasing function of Ca over the range examined.

When Ca is sufficiently large, the drop is expected to continually deform in an unrestricted manner, with-
out reaching a steady shape. To establish a critical capillary number, above which this unrestricted defor-
mation and breakup occur, we must be able to resolve very large drop deformations. Presently, we are
unable to accomplish this task using the current version of the code, since the curvature calculation becomes
ill-conditioned on a highly stretched mesh. This difficulty produces either slowly convergent calculations or,
in some cases, operational failure of the code. As an example of the difficulties encountered for large defor-
mations, Fig. 18 gives two of the computed drop shapes at time Uct/H = 1.83 using two different mesh
Fig. 18. Simulation results at Uct/H = 1.83 for a drop with 2a/H = 0.9, g = 1, and Ca = 0.95 for using a (a) simple and (b) more advanced
mesh-stabilization algorithm.
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stabilization techniques, both with 2a/H = 0.9, g = 1, and Ca = 0.95, using Nn = 6000. When the simpler
stabilization technique is employed (Zinchenko et al., 1997), the calculation begins to show signs of insta-
bility. However, when the more advanced mesh-stabilization technique (Zinchenko et al., 1999) is used,
more triangles are retained in the areas of high curvature in Fig. 18b. This approach to mesh stabilization
allows the calculation to continue for a short time where the drop continues to deform. The shapes given in
Fig. 18 represent the upper-stability limit for calculations due to the ill-conditioned curvature calculation,
inherent for drops undergoing large deformations. To overcome such difficulties, a method that is less sen-
sitive to the curvature calculation, or perhaps even recasting the boundary integrals into a form without
curvature, which has been demonstrated for drops in an unbounded fluid (Zinchenko et al., 1999), would
be required. To study tightly fitting drops that are also highly elongated, multipole acceleration of the
boundary integrals (Zinchenko and Davis, 2000, 2005), which affords feasible calculations for drop surfaces
with many triangles, e.g. Nn 
 104–105, is likely to be necessary to simultaneously resolve complicated drop
shapes and small surface clearances.

Our boundary-integral algorithm solution method utilizes the Green’s function for the space between two
parallel walls, thus avoiding discretization of the channel walls, and an economical scheme for evaluating the
two-wall interaction term, which is the most computationally burdensome portion of the code, was devel-
oped. This calculation scheme has enabled accelerations of several orders of magnitude, when compared
to the direct evaluation of the regularized Fourier–Bessel integrals. Near-singularity subtractions greatly
improve the convergence of the algorithm for small surface clearances. The algorithm allows for arbitrary
drop-to-medium viscosity ratios and drop diameters close to the channel dimensions to be considered, and
fast convergence of simple iterations is observed for drop-to-wall spacings of less than 0.5% of the channel
height when g = O(1). Furthermore, the algorithm is quite robust in resolving these small clearances without
the aid of adaptive surface triangulations (Staben et al., 2003). The choice of simple iterations, based on
successive substitutions, over a more advanced iterative scheme, such as biconjugate gradient or minimal-
residual iterations, was made to not over-complicate the code, leaving more difficult cases of extreme g
for future investigation. In addition to the above, a natural extension of this work would be to encompass
buoyant drops or incorporate other conservative body forces, which could be made by simple modifications
to the existing code.
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Appendix A. Economical evaluation of the two-wall interaction term in the Green’s function

The central aim of the current work is to develop efficient boundary-integral calculations that permit the
study of the creeping motion of a deformable drop between two parallel plane walls. The Green’s function
for the case of one wall (i.e. Gl

0 þGl
LW) (Blake, 1971) corresponds to the solution in the entire half-space

x3 > 0 or when H!1. In order to consider a channel consisting of two walls, repeated reflections must
be taken to satisfy the no-slip conditions on both walls simultaneously. The resulting Green’s function for
the domain between two parallel walls was originally derived by Liron and Mochon (1976) in terms of infinite
Fourier–Bessel integrals. Improvements to the original solution were made by regularizing the Fourier–Bessel
integrals, eliminating the slow convergence (Staben et al., 2003). However, direct calculation of the regularized
integrals at every timestep in dynamical simulations still imposes a prohibitive computational demand. To cir-
cumvent such expensive calculations, we have devised a scheme that involves double Taylor expansions of the
two-wall interaction term, bGlðx; yÞ, about the drop center, x = y = xc. In this way, the necessary repeated
reflections are assimilated into the boundary-integral equation, permitting dynamical simulations of deform-
able drops, without greatly decelerating the code.
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The smooth parts of the fundamental solution for the velocity and pressure fields (Staben et al., 2003; Liron
and Mochon, 1976) are represented as
bGl
jðx; yÞ ¼ ŵl

j þ m̂l
j; ðA1Þ

p̂lðx; yÞ ¼ q̂l þ ŝl: ðA2Þ
The expressions for the velocity are most conveniently handled separately for l = b = 1,2 from cases when
l = 3. Firstly, the velocity and pressure fields when j = a = 1,2 are
ŵb
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when l = 3 and j = a = 1,2 the velocity components become
m̂3
a þ ŵ3
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and for indices l = a and j = 3,
m̂a
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Finally, for the case when l = j = 3, the expressions for the velocity and pressure are
m̂3
3 þ ŵ3
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where q2 ¼ r2
1 þ r2

2, r1 ¼ x1 � y1, and r2 = x2 � y2.
The slow convergence of the original Fourier–Bessel integrals, when x 	 y and/or when x and y are close to

the same wall, is remedied by subtraction of the terms responsible for the poor numerical behavior from the
A(k)- and B(k)-coefficients of Liron and Mochon (1976). The resulting regularized Fourier–Bessel integrals
(Staben et al., 2003), involving functions of x3 and h = y3, are expressed using coefficients with hats
bA1ðkÞ ¼ A1ðkÞ � fhx3e�kðhþx3Þ þ ðh� 1Þðx3 � 1Þekðhþx3�2Þg; ðA9ÞbA2ðkÞ ¼ A2ðkÞ � k2f�hx3e�kðhþx3Þ � ðh� 1Þðx3 � 1Þekðhþx3�2Þg; ðA10ÞbA3ðkÞ ¼ A3ðkÞ � fhe�kðhþx3Þ þ ðh� 1Þekðhþx3�2Þg; ðA11ÞbA4ðkÞ ¼ A4ðkÞ � kðdj3 � dk3Þfhx3e�kðhþx3Þ � ðh� 1Þðx3 � 1Þekðhþx3�2Þg; ðA12ÞbA5ðkÞ ¼ A5ðkÞ � k2fhe�kðhþx3Þ � ðh� 1Þekðhþx3�2Þg; ðA13ÞbA6ðkÞ ¼ A6ðkÞ � k2f�he�kðhþx3Þ � ðh� 1Þekðhþx3�2Þg; ðA14Þ
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bB3ðkÞ ¼ B3ðkÞ �
1

2
fðh� x3Þekðh�x3Þ � ðhþ x3 � 2Þekðhþx3�2Þ þ ðhþ x3Þe�kðhþx3Þg; ðA16Þ

bB4ðkÞ ¼ B4ðkÞ �
1

2
fekðh�x3Þ þ ekðhþx3�2Þ � e�kðhþx3Þg: ðA17Þ
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Essential to the efficient calculation of the two-wall interaction term is the introduction of an auxiliary field,
gl

jðx; yÞ ¼ Gl
jðx; yÞ � 1

2
plðxÞxj, which can be shown to be a harmonic function with respect to x (i.e.

r2
xglðx; yÞ ¼ 0). For any harmonic function, Y(x), the Taylor expansion has a special form,
Y ðxÞ ¼
X1
m¼0

Xm

l¼�m

om;lY ðxÞjx¼xc
Zm;lðx� xcÞ; ðA18Þ
where Zm,l(x � xc) is a special solid spherical harmonic that depends only on (x � xc) (Zinchenko and Davis,
2000), and the derivative operator om,l is,
om;l ¼ ½D1 � iD2�lDm�l
3 for l P 0; ðA19Þ

om;l ¼ ð�1Þl½D1 þ iD2��lDm�jlj
3 for l < 0; ðA20Þ
where Dj = o/oxj for j = 1,2,3, and i ¼
ffiffiffiffiffiffiffi
�1
p

.
Consider a neutrally buoyant drop with a viscosity matching the surrounding fluid, when the double-layer

term (3) vanishes. The contribution of the two-wall interaction term to the boundary-integral (2) can be
expressed in discrete form as
Z

s
2rkðxÞnðxÞ � bGlðx; yÞdSx ¼

X
xn2S

WðxnÞ � bGlðxn; yÞ; ðA21Þ
where xn are the triangle vertices on S, and W(xn) = 2rk(xn)n(xn)DSn are the associated weights. For arbitrary
viscosity ratios, the single-layer portion of the boundary-integral equation containing the interaction term is
expected to have a more pronounced effect on the solution for velocity than the double-layer term. Substitut-
ing the relation bGl

jðx; yÞ ¼ ĝl
jðx; yÞ þ 1

2
p̂lðxÞxj in (A21) and using the expansion (A18) for ĝ and p̂ yields
X

xn2S
WðxÞ � bGlðx; yÞ ¼ 2 Re

X1
m¼0

Xm

l¼0

Dm;l;jom;lĝl
jðxc; yÞ þ 1

2

X1
m¼0

Xm

l¼0

om;lp̂lðxc; yÞ Dm;l;jðxc � yÞj þ Em;l

h i( )
;

ðA22Þ
where Re denotes the real parts of the braced argument. The ‘‘far-field moments’’, Dm;l;j and Em,l, which are
pre-calculated to expedite calculations, are defined as
Dm;l;j ¼
X
xn2S

Zm;lðxn � xcÞW jðxnÞ; ðA23Þ

Em;l ¼
X
xn2S

Zm;lðxn � xcÞW jðxnÞðxn � xcÞj; ðA24Þ
where it is understood that for l = 0, both quantities are additionally multiplied by 1/2. Calculations are fur-
ther facilitated by reordering the sums, thereby removing dependencies of the y point when appropriate, and
using sufficient truncation bounds for each of the sums. The idea here is simple: compute the coefficients using
a Taylor series about a single point, rather than performing calculations for every (x,y) pair.

When l = b = and j = a the auxiliary function is
ĝb
aðx; yÞ ¼ bGb

aðx; yÞ � 1

2
p̂bðx; yÞra ¼

1

4p
dab

Z 1

0

J 0ðkqÞbB1ðkÞdk� 1

q

Z 1

0

kJ 1ðqkÞbA1ðkÞdk

� ��
� rarb

q

Z 1

0

J 1ðkqÞbA5ðkÞdk� 2rarb
o

oðq2Þ
1

q

Z 1

0

kJ 1ðqkÞbA1ðkÞdk

� �	
: ðA25Þ
The mth order Bessel function can be expanded as (Abramowitz and Stegun, 1972):
J mðkqÞ ¼
X1
k¼0

Cm
k ðkqÞ2kþm

; ðA26Þ

Cm
k ¼

ð�1Þk

22kþmk!ðmþ kÞ!
: ðA27Þ
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The derivative operator ov;l ¼ ½D1 � iD2�lDv�l
3 is then applied to the appropriate combinations of pressure and

velocity (e.g. in (A25)).
Noting ½D1 � iD2�lðq2Þ ¼ ½D1 � iD2�lðr2

1 þ r2
2Þ, where r = x � y, and [D1 � iD2]l(q2k) = q2(k�l)2l (r1 � ir2)l

k!/k � l)!, the following coefficients are introduced for brevity:
að1Þk ¼
ð�1Þk

22kþ1ðk þ 1Þ!
; að0Þk ¼

ð�1Þk

22kk!
; Dhm ¼

ðh� xc
3Þ

m

m!
;

bk;l ¼
2l

ðk � lÞ! q
2ðk�lÞðr1 � ir2Þl:

ðA28Þ
Adhering to the above notations and applying the required operations to (A25) gives
X1
m¼0

Xm

l¼0

Dm;l;aom;lĝb
aðxc; yÞ

¼
X1
m¼0

Dhm

X1
l¼0

X1
k¼l

bk;lKð1Þl;m;k;b �
X1
m¼0

Dhm

X1
l¼0

X1
k¼l�2

rarbbk;l þ l½da1rb þ db1ra � iðdb2ra þ da2rbÞ�bk;l�1

�
þlðl� 1Þ½da1db1 � da2db2 � iðda1db2 þ da2db1Þ�bk;l�2

�
Kð2Þl;m;k;a; ðA29Þ

Kð1Þl;m;k;b ¼
1

4p

X1
v¼l

Dv;l;b að0Þk

Z 1

0

k2kDm
h Dm�l

x3

bA1ðkÞdk� að1Þk

Z 1

0

k2Kþ2Dm
h Dm�l

x3
bB1ðkÞdk

� �
; ðA30Þ

Kð2Þl;m;k;a ¼
1

4p

X1
m�l

Dm;l;a að1Þk

Z 1

0

k2kþ1Dm
h Dm�l

x3

bA5ðkÞdkþ 2að1Þkþ1

Z 1

0

k2kþ4Dm
h Dm�l

x3

bA1ðkÞdk

� �
; ðA31Þ
where now r = xc � y and the derivatives of the hat-coefficients (i.e. (A9)–(A17) with respect to x3 and h are
evaluated at h ¼ x3 ¼ xc

3. The integrands in (A30) and (A31) depend only on xc
3 and the integration variable k,

and are independent of y. Although the above expressions may appear to be more unwieldy than the original
integrals, one should note that (A30) and (A31) are independent of y, and the integrals in (A29) and (A30) are
rapidly convergent; typically values of k, less than about 7–8 suffice, requiring only a modest number of inte-
gration subintervals. The summations in (A29) are subject to strict truncation bounds to retain a given max-
imum power of r, which dictates the number of required terms for summation over all indices. Furthermore,
the only quantities that depend on y are Dhm, bk,l and r. All other quantities are calculated only once every
half-timestep. The remaining computations involve the terms ĝ3

3ðx; yÞ, ĝa
3ðx; y, ĝ3

aðx; yÞ, p̂aðx; yÞ, and p̂3ðx; yÞ,
which follow a similar methodology as given above.

The numerical accuracy of the Taylor expansions was checked against direct calculations involving the reg-
ularized Fourier–Bessel integrals, and it was found that the leading-order summation index was m, which
involves the term Dhm. For the most demanding cases when the drop is close to both walls, convergence
was achieved with m in the range of 10–15, depending on (x � xc) and the proximity of the interface to both
walls. Calculation of the interaction term in this manner reduces simulation times for a modest number of tri-
angles to 4–12 h on a PC, as opposed to a few weeks for direct calculation of the Fourier–Bessel integrals. To
apply this methodology to highly elongated drops, a drop would need to be partitioned into compact blocks
(Zinchenko and Davis, 2000) before Taylor expansions about the block centers are made. Such a generaliza-
tion, however, was not pursued in the current study limited to moderately large, subcritical deformations. Our
findings show that even for drops in close proximity to both walls, the two-wall interaction term contributes
relatively little to the overall solution for the cases examined.
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